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Motivating Example

Motivating example
Suppose we want to reconstruct an
image from samples of its Fourier
transform. How many samples do
we need?

Shepp-Logan phantom, x

Consider radial sampling,
such as in MRI or (roughly)
CT.

Ω
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Motivating Example

Nonconvexity is better

Fewer measurements are needed with nonconvex minimization:

min
u
‖Du‖pp, subject to (Fu)|Ω = (Fx)|Ω.

With p = 1, solution is u = x with 18 lines ( |Ω||x| = 6.9%).

With p = 1/2, 10 lines suffice ( |Ω||x| = 3.8%). (More than 104500

local minima.)

backprojection, 18 lines p = 1, 18 lines p = 1
2

, 10 lines p = 1, 10 lines

Slide 4 of 23

Operated by Los Alamos National Security, LLC for NNSA



Motivating Example

Nonconvexity is better

Fewer measurements are needed with nonconvex minimization:

min
u
‖Du‖pp, subject to (Fu)|Ω = (Fx)|Ω.

With p = 1, solution is u = x with 18 lines ( |Ω||x| = 6.9%).

With p = 1/2, 10 lines suffice ( |Ω||x| = 3.8%). (More than 104500

local minima.)

backprojection, 18 lines p = 1, 18 lines

p = 1
2

, 10 lines p = 1, 10 lines

Slide 4 of 23

Operated by Los Alamos National Security, LLC for NNSA



Motivating Example

Nonconvexity is better

Fewer measurements are needed with nonconvex minimization:

min
u
‖Du‖pp, subject to (Fu)|Ω = (Fx)|Ω.

With p = 1, solution is u = x with 18 lines ( |Ω||x| = 6.9%).

With p = 1/2, 10 lines suffice ( |Ω||x| = 3.8%). (More than 104500

local minima.)

backprojection, 18 lines p = 1, 18 lines p = 1
2

, 10 lines p = 1, 10 lines

Slide 4 of 23

Operated by Los Alamos National Security, LLC for NNSA



Motivating Example

New results

These are old results (Mar. 2006); what’s new?

I Reconstruction (to 50 dB) in 13 seconds (in Matlab; versus
literature-best 1–3 minutes).

I Exact reconstruction from 9 lines (3.5% of Fourier transform).

10 lines fastest 10-line re-
covery

9 lines recovery from
fewest samples
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Nonconvex compressive sensing

What is compressive sensing?

Ψ

A b

=

x x′

=

x

, .

I Compressive sensing is the reconstruction of sparse signals x
from surprisingly few incoherent measurements b = Ax.

I We suppose the existence of an operator or dictionary Ψ such
that most of the components of Ψx are (nearly) zero.
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Nonconvex compressive sensing

What is compressive sensing?

Ψ

A b

=

x x′

=

x

, .

I An undersampled measurement Ax is tantamount to a
compressed version of x. If x is sufficiently sparse, it can be
recovered perfectly.

I We exploit the fact that sparsity is mathematically special, yet a
general property of natural or human signals.
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Nonconvex compressive sensing

Optimization for sparse recovery

I Let x ∈ RN be sparse: ‖Ψx‖0 = K, K � N .

I Suppose A is an M ×N matrix, M � N , with A and Ψ
incoherent. For example, A = (aij), i.i.d. aij ∼ N(0, σ2). Let
b = Ax.

min
u
‖Ψu‖0, s.t. Au = b.

min
u
‖Ψu‖1, s.t. Au = b.

min
u
‖Ψu‖pp, s.t. Au = b,

Unique solution is u = x with opti-
mally small M , but is NP-hard.
M ≥ 2K suffices with probability 1.

Can be solved efficiently; requires
more measurements for reconstruc-
tion. M ≥ CK log(N/K)

where 0 < p < 1. Solvable in prac-
tice; requires fewer measurements
than `1.
M ≥ C1(p)K+pC2(p)K log(N/K)
(with V. Staneva)
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 2:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.1p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 2:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.2p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 2:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.4p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 2:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.5p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.1p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1:

x

Au = b

|u1|p + |u2|p + |u3|p = 0.6p
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1:

x

Au = b
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1/2:

x

|u1|p + |u2|p + |u3|p = 0.1p

Au = b
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1/2:

x

|u1|p + |u2|p + |u3|p = 0.8p

Au = b
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1/2:

x

|u1|p + |u2|p + |u3|p = 0.9p

Au = b
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Nonconvex compressive sensing

The geometry of `p

minu ‖u‖pp, subject to Au = b
p = 1/2:

x

|u1|p + |u2|p + |u3|p = 1p

Au = b
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Nonconvex compressive sensing

Why might global minimization be possible?

Consider an ε-regularized objective, restricted to the feasible plane:
N∑

i=1

(
u2

i + ε
)p/2

.

A moderate ε fills in the local minima.
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(
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i + ε
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Examples

3-D tomography

Six radiographs allow reconstruction of a stalagmite segment:

radiograph isosurface

iso from end

one z slice

lower z slice

x slice y slice
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Examples

Cortical activity reconstruction from EEG

eigenfunction basis wavelet basis not sparse, noisy

Cortical activity is reconstructed perfectly from synthetic EEG data,
consisting of 256 scalp potential measurements. The synthetic
signals have 80 nonzero coefficients from graph-diffusion
eigenfunction or wavelet bases. Making the signal only
approximately sparse and adding noise results in very little
reconstruction error.
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Examples

Numerical tests

Reconstruction frequency from 100 random measurements of
256-dimensional signals, using IRLS with and without
regularization.
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Fast algorithm

Semiconvex regularization

Now we generalize an approach of J. Yang, W. Yin, Y. Zhang, and Y.
Wang. Consider a componentwise, mollified `p objective:

ϕ(t) =
{

γ|t|2 if |t| ≤ α
|t|p/p− δ if |t| > α

The parameters are chosen to
make ϕ ∈ C1.

p = 1/2
p = 0
p = −1/2

t

ϕ(t)

Now we seek ψ such that

ϕ(t) = min
w

{
ψ(w) + (β/2)|t− w|22

}
This can be found by convex duality, as |t|22/2−ϕ(t)/β is convex if
β = αp−2.
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Fast algorithm

A splitting approach

Now we consider an unconstrained `p minimization problem, and
replace

min
u

N∑
i=1

ϕ((Ψu)i) + (µ/2)‖Au− b‖22

with the split version

min
u,w

N∑
i=1

ψ(wi) + (β/2)‖Ψu− w‖22 + (µ/2)‖Au− b‖22,

which we solve by alternate minimization.
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Fast algorithm

Easy iterations

Holding u fixed, the w-subproblem is separable, and its solution
comes from the convex duality:

wi = max

{
0, |(Ψu)i| −

|(Ψu)i|p−1

β

}
(Ψu)i

|(Ψu)i|
.

This generalizes shrinkage ( or soft thresholding ) to `p.

Holding w fixed, the u-problem is quadratic:

(βΨ∗Ψ + µA∗A)u = βΨ∗w + µA∗b.

If A is a Fourier sampling operator and Ψ is Fourier-diagonalizable
(such as a derivative operator or orthogonal wavelet transform), we
can solve this in the Fourier domain. This is very fast!
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Fast algorithm

Enforcing equality

min
u,w

N∑
i=1

ψ(wi) + (β/2)‖Ψu− w‖22 + (µ/2)‖Au− b‖22

Typically one enforces w = Ψu (and Au = b, if desired) by
iteratively growing β (and µ). (continuation)

We get better results from an augmented Lagrangian (cf. split
Bregman, T. Goldstein, S. Osher):

min
u,w

N∑
i=1

ψ(wi) + (β/2)‖Du−w−λ1‖22 + (µ/2)‖Au− b−λ2‖22,

and update λn+1
1 = λn

1 + w −Ψu, λn+1
2 = λn

2 + b−Au.
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Fast algorithm

Multiple penalty terms and other constraints

The same approach can easily handle two or more penalty terms in
the objective:

min
u,w,v

N∑
i=1

ψ1(wi) + (β1/2)‖Ψ1u− w‖22

+
N∑

i=1

ψ2(vi) + (β2/2)‖Ψ2u− v‖22 + (µ/2)‖Au− b‖22

One can also use a similar splitting/augmented-Lagrangian
approach to handle inequality noise constraints, nonnegativity
constraints, etc. The method is very flexible.
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One can also use a similar splitting/augmented-Lagrangian
approach to handle inequality noise constraints, nonnegativity
constraints, etc. The method is very flexible.
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Summary

Summary

I Nonconvex compressive sensing allows compressible images
to be recovered with even fewer measurements than
“traditional” compressive sensing.

I Nonconvexity also improves robustness to noise and signal
nonsparsity.

I Regularizing the objective appears to keep algorithms from
converging to nonglobal minima.

I For Fourier-sampling measurements, the reconstruction can be
done very fast.

math.lanl.gov/~rick
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